22103

21222

3 Hours / 70 Marks

Seat No.				

15 minutes extra for each hour

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Solve any <u>FIVE</u> of the following:

10

- a) Find value of $\log \left(\frac{2}{3}\right) + \log \left(\frac{4}{5}\right) \log \left(\frac{8}{15}\right)$.
- b) Show that the points (8, 1), (3, -4), (2, -5) are collinear.
- c) Without using calculator find value of sin(105°).
- d) Find area of Rhombus where diagonals are of length 6cm and 9cm.
- e) Find surface area of cuboid whose dimensions are $8 \, \text{cm} \times 11 \, \text{cm} \times 15 \, \text{cm}$.
- f) If coefficient of variance is 5 and mean is 60. Find standard deviation.
- g) Find range and coefficient of range for the data: 40, 52, 47, 28, 45, 36, 47, 50.
- h) Find surface area of sphere whose volume is $\frac{4\pi}{3}$ cm³.

12

12

12

2. Solve any THREE of the following:

- a) If $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ prove that $A^2 = I$.
- b) Resolve following into partial fraction $\frac{x+3}{(x-1)(x+1)(x+5)}$
- c) Following results are obtained as a result of experiment. Find V_1 , V_2 , V_3 by using Cramer's Rule. $V_1 + V_2 + V_3 = 9$, $V_1 V_2 + V_3 = 3$, $V_1 + V_2 V_3 = 1$
- d) Compute mean deviation for the mean of the data: 12, 6, 7, 3, 15, 10, 18, 5.

3. Solve any THREE of the following:

- a) Solve without using calculator, $\sin(420^\circ) \cos(390^\circ) + \sin(-330^\circ) \cos(-300^\circ)$
- b) Prove : $\frac{\sin 4\theta + \sin 2\theta}{1 + \cos 2\theta + \cos 4\theta} = \tan 2\theta$
- c) Prove that : $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$
- d) Prove : $tan^{-1} (\frac{1}{8}) + tan^{-1} (\frac{1}{5}) = tan^{-1} (\frac{1}{3})$

4. Solve any THREE of the following:

- a) Find x and y if $\begin{cases}
 4\begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 3 \end{bmatrix} 2\begin{bmatrix} 1 & 3 & -1 \\ 2 & -3 & 4 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$
- b) Resolve into partial fractions: $\frac{3x-2}{(x+2)(x^2+4)}$
- c) Prove : $\cos 20^{\circ}$. $\cos 40^{\circ}$. $\cos 80^{\circ} = \frac{1}{8}$

22103	[3
-------	-----

Marks

d) If $tan(x + y) = \frac{3}{4}$ and $tan(x - y) = \frac{1}{3}$. Find tan 2x.

]

e) If $\sin A = \frac{1}{2}$. Find $\sin 3A$.

5. Solve any TWO of the following:

12

- a) Attempt the following:
 - i) Find equation of line passing through points (6, -4) and (-3, 8).
 - ii) Find distance between parallel lines 3x + 2y 5 = 0 and 3x + 2y 6 = 0.
- b) Attempt the following:
 - i) Find equation of line passing through point (2, 0) and perpendicular to x + y + 3 = 0.
 - ii) Find acute angle between the lines 3x y + 4 = 0 and 2x + y = 3.
- c) Attempt the following:
 - i) Find the area of ring between two concentric circles whose circumferences are 77 cm and 55 cm.
 - ii) The area of piece of land is in the form of a quadrilateral ABCD. The diagonal AC is 400 m long off-set to B is 220 m and off-set to D is 98 m. Find the area.

22103

Marks

6. Solve any TWO of the following:

12

a) Find the mean and standard deviation and coefficient of variance of the following data:

C	lass interval	0-10	10-20	20-30	30-40	40 - 50
	Frequency	3	5	8	3	1

b) Attempt the following:

i) Find range and coefficient of range for following data:

Marks	10-19	20-29	30-39	40-49	50-59	60-69
No. of students	6	10	16	14	8	4

ii) The two sets of observations are given below:

Set I	Set II
$\bar{x} = 82.5$	$\bar{x} = \text{mean} = 48.75$
$\sigma = S.D = 7.3$	$\sigma = S.D = 8.35$

Which of two sets is more consistent?

c) Solve the following equations by matrix inversion method.

$$x + y + z = 3$$
, $x + 2y + 3z = 4$, $x + 4y + 9z = 6$.