STRENGTH OF MATERIALS

: Automobile Engineering./ Agricultural Engineering/ Civil Engineering/ Civil & Rural

Engineering/

Programme Name/s Construction Technology/ Civil & Environmental Engineering/ Mechanical

Engineering/ Production Engineering/

Programme Code : AE/ AL/ CE/ CR/ CS/ LE/ ME/ PG

Semester : Third

Course Title : STRENGTH OF MATERIALS

Course Code : 313308

I. RATIONALE

All civil & mechanical engineering components are subjected to different types of loads and behave in a specific way. Students can able to understand & analyze various types of loads, stresses & strains with regards to the structural behavior of components and materials. This course is a prerequisite for understanding elastic behavior of different engineering materials, structural analysis, machine design, principles and the strengths of various structural elements used in civil & mechanical industries.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Analyze the stresses & strains in the given structural elements using relevant methods.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Calculate the M.I. of the given object using relevant formulae & methods.
- CO2 Analyze the structural behavior of the given structural components under various loading conditions.
- CO3 Draw SFD and BMD for the given structural element under given loading conditions.
- CO4 Determine the bending and shear stresses in beams under different loading conditions
- CO5 Analyze the direct & bending stresses in the structural members under eccentric loading conditions.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

				L	earı	ning	Sche	eme					A	ssess	ment	Sche	eme		7		
Course Code	Course Title	Abbr	Course Category/s	Co	ctua onta ./W	ct eek		NLH	Credits	Paper Duration		The	ory		`	sed o T Prac		&	Base Sl	L	Total Marks
1	K	1		CL	TL	LL				Duration	FA-	SA- TH	Tot	tal	FA-	PR	SA-	PR	SL		Marks
- 7		. /									Max	Max	Max	Min	Max	Min	Max	Min	Max	Min	- 1
313308	STRENGTH OF MATERIALS	SOM	DSC	4,	1	2		6	3	3	30	70	100	40	25	10		-		-	125

Total IKS Hrs for Sem.: 1 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination

Note:

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.
- 7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.
1	TLO 1.1 Calculate Centroid, Moment of Inertia of Plane lamina and radius of gyration of a given lamina. TLO 1.2 Explain Parallel and Perpendicular axes theorems. TLO 1.3 Calculate Moment of inertia of standard solid shapes and hollow shapes. TLO 1.4 Calculate Moment of inertia of composite plane figures such as I, C, T & L sections. TLO 1.5 Understand Moment of inertia for built-up section.	Unit - I Moment of Inertia 1.1 Concept of Moment of Inertia, M.I. of plane lamina and radius of gyration of a given lamina. 1.2 Parallel and perpendicular axes theorems (without derivation). 1.3 M.I. of standard basic figures like square, rectangle, triangle, circle, semi-circle, quarter-circle and Hollow Rectangular & Circular sections. (without derivation). 1.4 M.I. of Composite plane figures such as symmetrical and unsymmetrical I-section, channel section, T-section, angle section. Numerical on composite figure consisting of maximum 03 standard shapes. 1.5 Introduction to M.I. for built-up sections. (No numerical). (IKS* Concept of Centre of Gravity & M.I. used in ancient constructions like temples, forts etc.)	Chalk-Board Hands-on Collaborative learning Video Demonstrations Presentations

Suggested **Theory Learning Outcomes** Learning content mapped with Theory Learning Sr.No Learning (TLO's)aligned to CO's. Outcomes (TLO's) and CO's. Pedagogies. TLO 2.1 Understand concept of stresses and strains in deformable **Unit - II Simple Stresses, Strains & Elastic Constants** TLO 2.2 Understand Hook's law, 2.1 Concept of elastic body ,definition of stress, elastic limit, Linear and lateral strain, Type of stresses & strains. strain. Poisson's ratio. 2.2 Hook's law, elastic limit, Linear and lateral TLO 2.3 Determine modulus of strain, Poisson's ratio. elasticity, modulus of rigidity and 2.3 Young's Modulus, Shear Modulus, Bulk bulk modulus for given material. Modulus & Relation between these three moduli. TLO 2.4 Articulate practical 2.4 Standard stress strain curve for mild steel bar significance of stress- strain curve and Tor steel bar under tension test, Yield stress, for given material under given - Chalk-Board proof stress, ultimate stress, breaking stress, and loading conditions for their relevant - Hands-on working stress, strain at various critical points, Collaborative percentage elongation and Factor of safety. 2 TLO 2.5 Concept of single shear, learning 2.5 Shear stress and shear strain, Single shear, - Video double shear & punching shear. Double shear, Punching shear. TLO 2.6 Compute the total - Demonstrations 2.6 Deformation of body subjected to axial force deformation for given - Presentations for uniformed and stepped sections. Deformation homogeneous (compound) sections of uniform body subjected to forces at its under axial load. intermediate sections. TLO 2.7 Determine the stresses in 2.7 Concept of composite section, stresses induced each material for given composite and load shared by each material under axial section. loading only.(No numerical on stepped sections). TLO 2.8 Compute strain along x, y 2.8 Uni-axial, Bi-axial and Tri-axial stress and z-direction for a given bi-axial or tri-axial stress system. 2.9 Strain in each direction, volumetric strain, TLO 2.9 Determine volumetric change in volume. strain & change in volume for given cube or cuboid. **Unit - III Shear Force & Bending Moment** TLO 3.1 Enlist Types of Supports 3.1 Types of Supports: Simple, Hinge, Roller & & Types of Beams Fixed and Beams: Cantilever, Simply supported, TLO 3.2 Enlist types of loads Roller, Hinge & overhanging beams. acting on a beam. Chalk-Board 3.2 Types of loads: Concentrated or Point load, TLO 3.3 Understand the relation Hands-on Inclined point load & Uniformly Distributed load. between SF, BM and rate of Collaborative 3.3 Meaning of SF and BM, Relation between 3 loading. learning them, Sign conventions. TLO 3.4 Draw SFD and BMD for Video 3.4 SFD & BMD for Simply Supported, Simply supported beams Demonstrations Cantilever and overhanging beams subjected to ,Cantilever beams & overhanging Presentations Vertical point load & UDL only. beams. 3.5 Drawing SFD and BMD, Location of Point of TLO 3.5 Locate point of maximum Contra-Shear, maximum BM, Location of Point of BM and point of contra-flexure. Contra-flexure.

Course Code: 313308 Suggested **Theory Learning Outcomes** Learning content mapped with Theory Learning Sr.No Learning (TLO's)aligned to CO's. Outcomes (TLO's) and CO's. Pedagogies. Unit - IV Bending and Shear Stresses in beams TLO 4.1 Understand concept of 4.1 Theory of pure bending, assumptions in pure pure bending, Neutral Axis and bending, Concept of Neutral Axis and section radius of gyration of a given lamina modulus. and section modulus. 4.2 Flexural Equation (without derivation) with TLO 4.2 Determine Moment of meaning of each term used in equation, bending Resistance (M.R.) & section stresses and their nature, bending stress modulus (Z) using Flexural distribution diagram. Formula. Chalk-Board 4.3 Bending stress variation diagram across depth TLO 4.3 Determine the Bending Hands-on of given cross section for cantilever and simply stresses at given location in simply Collaborative supported beams for symmetrical sections only. 4 supported & cantilever beams Learning 4.4 Shear stress equation (without derivation), subjected to standard loading cases Demonstration meaning of each term used in equation, relation (Point load & UDL only). Video between maximum and average shear stress for TLO 4.4 Compute & draw Presentations square, rectangular and circular section maximum and average shear stress (numerical), shear stress distribution diagram. for rectangular and circular section. 4.5 Shear stress distribution diagram for square, TLO 4.5 Draw shear stress rectangular, circle, hollow square, hollow distribution diagram for given rectangular, hollow circle, T- section & section across its depth. symmetrical I- section only. (no numericals) TLO 4.6 Determine shear stresses 4.6 Use of shear stress equation for determination in hollow rectangular section. of shear stresses in hollow rectangular section. TLO 5.1 Explain effect of direct and eccentric loads on columns. **Unit - V Direct and Bending Stresses** TLO 5.2 Draw resultant stress 5.1 Introduction to direct and eccentric loads, distribution diagram for a Eccentricity about one principal axis, nature of compression member subjected to eccentric load about one of its 5.2 Maximum and minimum stresses, resultant principal axis. stress distribution diagram. Condition for 'No Chalk-Board TLO 5.3 Write No tension tension' condition(Problems on Column subjected Collaborative condition for columns, Core of the to Eccentric load about one axis only.) learning 5 section for rectangular & circular 5.3 Limit of eccentricity, core of section for Presentations circular cross sections, middle third rule for column. Demonstration TLO 5.4 Identify the terms radius rectangular section. Videos of gyration, slenderness ratio & 5.4 Introduction to compression members, effective length for given column effective length, radius of gyration, slenderness with different end conditions. ratio, type of end conditions for columns. TLO 5.5 Understand the concept of 5.5 Buckling (or Crippling) load for columns by Euler's Formula & Rankine's Formula with buckling load in columns using

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

meaning of each term in it.(No numericals.)

Practical / Tutorial / Laboratory Learning Outcome (LLO)		Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Identify different components of UTM .	1	*Conduct sample compressive and tensile tests on metal using Universal Testing Machine along with introduction to machine & other tests to be conducted on UTM.	2	CO2
LLO 2.1 Perform Tension test on mild steel as per IS:432(1).	2	*Tension test on mild steel as per IS:432(1).	2	CO2
LLO 3.1 Perform tension test on Tor steel as per IS:1608, IS:1139.	3	Tension test on Tor steel as per IS:1608, IS:1139.	2	CO2

Euler's Formula & Rankine's

Formula.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 4.1 Conduct compression test on sample test piece using Compression Testing Machine.	4 Steel, Brass, Al etc. using Compression Testing		2	CO2
LLO 5.1 Conduct Izod Impact test on given metals as per IS:1598.	5	*Izod Impact test on any two metals like mild steel/ brass/aluminum/ copper /cast iron etc. as per IS:1598.	2	CO2
LLO 6.1 Conduct Charpy Impact test on given metals as per IS:1598.	6	Charpy Impact test on two metals like mild steel/ brass/aluminum/ copper /cast iron etc. as per IS:1757.	2	CO2
LLO 7.1 Determine Compressive strength of dry and wet bricks.	7	Compressive strength of dry and wet bricks as per IS:3495 (part I), IS:1077.	2	CO2
LLO 8.1 Perform Single Shear and double shear test on given metals as per IS:5242.	8	*Single Shear and double shear test on any two metals like Mild steel/ brass/ Al / copper / cast iron etc. as per IS:5242.	2	CO2 CO4
LLO 9.1 Conduct Compression test on timber section along the grain and across the grain.	9	Compression test on timber section along the grain and across the grain as per IS:2408.	2	CO1 CO2
LLO 10.1 Plot Shear force and Bending Moment diagrams of beams subjected to different types of loads.	10	*Shear force and Bending Moment diagrams of cantilever, simply supported and overhanging beams for different types of loading. (02 problems on each type of beam).	4	CO3
LLO 11.1 Conduct Flexural test on timber beam on rectangular section.	11	*Flexural test on timber beam on rectangular section in both orientations as per IS:1708, IS:2408	2	CO1 CO4
LLO 12.1 Prepare PPT on Strain Energy. LLO 12.2 Prepare PPT on Thermal Stresses & Thermal Strains.	12	 a) Prepare PPT of minimum 05 slides on the concept of Strain Energy & instantaneous stress induced in a material due to gradual, Sudden & impact load. b) Prepare PPT of minimum 04 slides on Thermal Stresses & Thermal Strains. 	2	CO2
LLO 13.1 Conduct Flexure test on floor tiles/roofing tiles.		Flexure test on floor tiles IS:1237, IS:13630 or roofing tiles as per IS:654, IS:2690.	2	CO4
LLO 14.1 Determine hardness no. for given metal using Rockwell Hardness Tester.		Rockwell Hardness Test on any two Metals like Mild Steel, Brass Copper, Aluminum etc.	2	CO2
LLO 15.1 Determine hardness no for given metals using Brinell Hardness Tester.	15	Brinell hardens test on any two metals like Mild Steel, Brass Copper, Aluminum etc.	2	CO2

Note: Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT / ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

- Collect the information of Indian Knowledge System (IKS) given in different units.
- Prepare charts of maximum bending moment and shear force values in standard beams.
- Two Numericals on Chimneys (of rectangular and circular cross section) subjected to wind pressure & also draw stress distribution diagram at base of it.

STRENGTH OF MATERIALS Course Code: 313308

Draw & identify difference between Bending stress distribution & Shear stress distribution diagrams for square, rectangular, circle, hollow square, rectangular, circle, T- section, & symmetrical I- section.

Note:

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
1	Extensometer with least count 0.01mm, maximum extension 25 mm with dial gauge/ digital display suitable for various gauge length.	1,2,3
2	Accessories: Vernier caliper, meter scale, weighing balance, weights, punch, file, hammer, screw driver, pliers, etc.	1,2,3,4,5,6,7,8,9,11,13
3	Universal Testing Machine of capacity 1000kN, 600 kN / 400 kN, analog type/digital type with all attachments and accessories.	1,2,3,8,11,13
4	Tile flexural testing machine confirming to IS:654, capacity 200 Kg with uniform loading rate of 45 to 55 Kg/minute provided with lead shots.	13
5	Brinell and Rockwell Hardness Test machine.	14,15
6	Compression Testing Machine of capacity 2000 kN / 1000 kN, analog / digital type with all attachments and accessories.	4,7,9
7	Izod/Charpy impact testing machine confirming to IS: 1757.	5,6
8	Hot Air Oven with thermostatic control having temp. range 100 to 105 degree celsius .	7

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks
1	I	Moment of Inertia	CO1	10	2	4	6	12
2	II	Simple Stresses, Strains & Elastic Constants	CO2	16	6	8	4	18
3	III	Shear Force & Bending Moment	CO3	14	2	4	10	16
4	IV	Bending and Shear Stresses in beams	CO4	10	2	4	6	12
5	V	Direct and Bending Stresses	CO5	10	2	4	. 6	12
Grand Total				60	14	24	32	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

Two-unit tests of 30 marks each will be conducted and average of two-unit tests considered. • For formative assessment of laboratory learning 25 marks • Each practical will be assessed considering appropriate % weightage to process and product and other instructions of assessment.

Summative Assessment (Assessment of Learning)

• Pen and Paper Test (Written Test)

XI. SUGGESTED COS - POS MATRIX FORM

			Progra	amme Outcoi	mes (POs)	13)		S Ou	ogram pecifi itcom PSOs	c es*
Course Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools				1	PSO- 2	PSO-
CO1	3	3	2	2	1		2		- 4	1
CO2	3	3	3	3	1	. · · · <u></u> . · · .	3	- 1		
CO3	3	3	2	1	1	<u></u>	2			1
CO4	3	3	2	1	1		2	1		
CO5	3	3	2	1	1		2	- 36		

Legends:- High:03, Medium:02, Low:01, No Mapping: -

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number		
1	Khurmi R.S., Khurmi N.	A Textbook of Strength of Materials	S. Chand and Co. Ltd. New Delhi, 2019, ISBN 9789352833979		
2	Ramamrutham S.	Strength of Materials	Dhanpat Rai and sons, New Delhi, 2015, ISBN 9788187433545		
3	Punmia B. C., Ashok Kumar Jain , Arun Kumar Jain .	Mechanics of Materials	Laxmi Publications (p) Ltd. New Delhi, 2017, ISBN-13: 978-8131806463		
4	Rattan S.S.	Strength of Materials	McGraw Hill Education; New Delhi 2017, ISBN-13: 978-9385965517		
5	Rajput R. K.	A Textbook of Strength of Materials	S. Chand Publishing 9789352533695, 9352533690		

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description
1	https://youtu.be/DzyIEz3dKXQ?si=beGDRqJ1olZ70LUe	Concept of Stress and Strain.
2	https://youtu.be/RSlmDKHDMUY? si=FHCxXE1QSaa0FqBn	Standard stress-strain curve for mild steel bar and Tor steel bar .
3	https://www.youtube.com/watch?v=MFZ18Ed4HI8	Field Test on TMT.
4	https://www.youtube.com/watch?v=C-FEVzI8oe8	Concept of SFD and BMD.
5	https://www.youtube.com/watch?v=yvbA4mk36Kk	Practical examples of SFD and BMD.
6	https://www.youtube.com/watch?v=f2eGwNUopws	Concept & Numerical on Point of Contraflexure.
7	https://www.youtube.com/watch?v=f08Y39UiC-o	Bending Stresses & Shear Stresses in Beams.
8	https://skyciv.com/structural-software/beam-analysis-softwar	Calculation & Drawing of SFD & BMD freeware Software .

^{*}PSOs are to be formulated at institute level

07-12-2024 05:25:17 PM

Course Code: 313308

STRENGTH OF MATERIALS

Sr.No	Link / Portal	Description
Note:		
	requested to check the creative common lice ional resources before use by the students	nse status/financial implications of the suggested
ho		

MSBTE Approval Dt. 02/07/2024

Semester - 3, K Scheme