	(3 Hours) Total Marks :80	
	Note: 1) Question No.1 is compulsory	
	2) Attempt any Three from the remaining	
Q1		Ñ.
A)	Find $L\left\{\int_0^t e^{-u} u^n du\right\}$	5
B)	Prove that $f(z) = e^z$ is analytic everywhere. Hence find $f'(z)$	5
C)	Find half range sine series of $f(x) = x$ in $(0, \pi)$	5
D)	If $A=[a_{ij}]$ is a matrix of order 3×3 such that $a_{ij}=\begin{cases} 1, & \text{if } i\neq j\\ 0, & \text{if } i=j \end{cases}$	5
	Find an eigen value of	
	i) A A	
	ii) adjoint of A	
	iii) $A^2 - 2A + 2I$	
Q2		
A)	If $L[f(t)] = \frac{1}{9s^2 - 3s + 1}$ then Find $L[te^t f(3t)]$	6
B)	Find Fourier series for $f(x) = x$, if $0 < x < 2\pi$ and $f(x + 2\pi) = f(x)$	6
C)	Find analytic function $f(z)$ in terms of z where $u = y^2 - x^2$	8
Q3		
A)	A string is stretched and fastened to two points distance l apart. Motion is started by displacing the string in the form $y=a \sin(\pi x/l)$ from which it is released at time t=0. Show that the displacement of a	6
	point at a distance x from one end at time t is given by $y = a \sin(\pi x/l) \cos(\pi ct/l)$	
	point at a distance x from one end at time t is given by y a sin(xx, t) dos (xet/t)	
B)	Prove that	6
	$u = e^x cosy$ is harmonic function hence find it's harmonic conjugate function	
C)	Find the Fourier Series for $f(x)$ in $(-\pi, \pi)$ where	8
	f(x) = x	
04		
Q4 A)	c∞ [cos2t=cos4t]	6
A)	Evaluate $\int_0^\infty \left[\frac{\cos 2t - \cos 4t}{t} \right] dt$	O
B)	Find Inverse Laplace transform of $\frac{s+1}{(s-1)^2(s-2)}$	6
		1361
C)	Is the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ Diagonalizable? If so find the Diagonal form of A	8
	LI Z ZI	

Q5
A) If
$$A=[a_{ij}]$$
 is a matrix of order 3×3 such that
$$\begin{cases}
2, & \text{if } i=j
\end{cases}$$

$$a_{ij} = \begin{cases} 2, & \text{if } i = j \\ -1, & \text{if } i + j = 3 \text{ or } 5 \\ 1, & \text{if } i + j = 4 \text{ and } i \neq j \end{cases}$$
Compute: $A^9 - 6A^8 - 9A^7 - 4A^6 + A^5 - 12A^4 - 18A^3 - 8A^2 + 2A + I$

B) Solve by Crank-Nicholson simplified formula
$$\frac{\partial^2 u}{\partial x^2} - 16 \frac{\partial u}{\partial t} = 0$$
,

 $0 \le x \le 1$ subject to the condition u(0,t) = 0, u(1,t) = 100t,

u(x,0)=0 h=0.25 for one-time step

c) Find inverse Laplace transform of (i)
$$log[z^2 - 4]$$
 (ii) $\frac{s+2}{(s+16)}$

Q6

A) Find the Laplace Transform of
$$\int_0^t \cos(u)\sin(u)du$$

Find the solution of B)

$$4\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0.0 < x < 8, \quad u(x, 0) = 4x - \frac{1}{2}x^2, u(0, t) = 0, u(8, t) = 0$$

Taking
$$h = 1, k = \frac{1}{8}$$
 for $0 \le t \le 5/8$

Where h is the step length for x axis and k is the step size in time direction using Bender -Schmidt method

Find inverse Laplace transform of $\frac{1}{(s^2+16)((s^2+49))}$ using convolution theorem